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DIFFERENCE POTENTIALS AND THEIR APPLICATIONS*

V.S.RYABEN'KIIt

Abstract. In this lecture, we introduce the concept of difference potentials with the density from

the space of discontinuities or jumps, which extends and generalizes the previous constructions of difference

potentials; this new concept is sufficiently universal and at the same time simple. The apparatus of difference

potentials constitutes the foundation of the difference potentials method (DPM).

Before considering the actual constructions of difference potentials, we discuss some new opportunities

that the DPM provides for computations. This brief introductory discussion (as well as the main part of

the lecture itself) has a goal of drawing the attention of the scientific computing research community to the

DPM and its applications. Although the construction of difference potentials with the density from the space

of jumps presents an independent mathematical interest, the subject of this lecture will seem too abstract

without discussing the possible applications in the beginning. Moreover, in the end of the lecture we will give

a review of the literature emphasizing some applications of the DPM that have already been implemented

in computational practice.

Key words, difference potentials method, boundary-value problems, domain decomposition, active

sound control

Subject classification. Applied and Numerical Mathematics

1. Introduction. The DPM extends the capabilities of both the classical finite difference method

(FDM) and the boundary elements method (BEM). Let us first compare the DPM against FDM. It is well

known that the problems most suited for the solution by the FDM are those formulated on the geometrically

simple, e.g., rectangular, domains and discretized on the simple structured, e.g., Cartesian, grids. In this

case, the resulting fiuite-difference schemes typically appear easily parallelizable as well. The DPM allows

one to use these simplest finite-difference schemes for the numerical solution of linear PDE's/systems on the

domains with curvilinear boundary and for the case of general boundary conditions. Moreover, it should be

emphasized that the DPM does not require any finite-difference approximation of the boundary conditions.

Now, let us compare the DPM vs. BEM. The BEM is known as a numerical methodology for solving

boundary integral equations of the classical potential theory. These boundary integral equations require

knowing explicitly the fundamental solution of the corresponding differential operator; moreover, often these

equations are not equivalent to the original boundary-value problem on the domain (e.g., the so-called

"inner resonances" problem). The restrictions relevant to the equations of the classical potential theory

are as well translated to the BEM. On the other hand, the pseudodifferential boundary equations known

at the Calderon-Seeley equations require neither knowledge of the fundamental solutions nor use of the

integrals. These equations are always equivalent to the original differential boundary-value problems on
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the domain. However, they cannot be discretized directly using any kind of numerical quadratures and/or

BEM, because they do not contain any integrals at all. One possible viewpoint at the DPM is that it is

a numerical methodology for solving the modified Calderon-Seeley equations. In this respect, the DPM

plays the same role for the modified Calderon-Seeley boundary equations as the BEM does for the boundary

integral equations of the classical potential theory.

There are also some similarities between the DPM and the capacitance matrix method [7], however these

two methods actually employ difference potentials of different types.

Among the applications of the DPM we name the following:

• Numerical solution of internal and external boundary-value problems;

• Artificial boundary conditions for the numerical solution of infinite-domain problems;

• Domain decomposition, including some aspects of parallel computing;

• Finite-difference model for the problem of active shielding and noise control and its general solution.

2. Construction, Computation, and Properties of the Difference Potentials. The algorithm

for constructing the difference potentials will be the following. First, we consider an arbitrary linear finite-

difference equation or system on an arbitrary irregular grid and introduce a special grid contour and a

piecewise-regular solution of the aforementioned equation/system with a discontinuity, i.e., jump, on this

contour. Then, we show that for any prescribed jump there exists a unique piecewise-regular solution. Finally,

the difference potential with the density from the space of jumps will be identified with the piecewise-regular

solution, which has the same jump. This way of introducing the difference potentials is analogous to the

well-known definition of the Cauchy-type integral:

1 _r vr(4)d4,(1) u+(z) = _ _- z

which can be obtained as a piecewise-regular analytic function with the jump vr(_) on the contour F and

zero limit as Iz] _ oo.

Let us also note that the Cauchy-type integral can be interpreted as a potential for the Cauchy-Riemann

system

COa cOb cOb cOa

(2) cOx cOy- o, + = o,

that connects the real and imaginary parts of the analytic function

(3) f(z) = a(x, y) + ib(x, y), z = x + iy

that vanishes as (x 2 + y2) __. c_.

We will now give a rigorous definition of the difference potentials. Let M be an arbitrary finite set of

points, we will call it the grid M; and let Nm, m E M, be another finite set of points (it may be different

for different m E M) that we will call the stencil of the finite-difference scheme centered at node m E M.

We define the grid N = U Nm, and also introduce the coefficients amn, m E M, n E Nm, of the finite-
mEM

difference equation. Finally, we specify some subspacc UN of the linear space WN of all functions uN defined

on the grid N.



Then,weconsidertheequationwiththecoefficientsamn:

amnUn _- O, m E M,(4)
I

nENm

and assume that the following problem

(5) _ amnUn = fro, m E M
nENm

(6) uN _ UN

has a unique solution UN for every fM = {fro), m E M. The inclusion (6) can be considered a boundary

condition for the equation (5). Here fro, m E M, and un, n E N, can be vector-functions and amn, m E M,

n E Nm, can accordingly be matrix coefficients.

DEFINITION 2.1. Every function Ug, UN E UN, is called a regular function.

Let, for example, equation (4) be a standard five-point difference approximation of the Laplace equation

on a Cartesian grid with the size h -- 1_, where K is a positive integer. Let the grid M contain all the nodes

m -- (mlh, m2h) which belong to the interior of the square 0 < x, y < 1. Here, ml and m2 are some integers.

Let the regular functions UN from the space UN satisfy the condition of vanishing at the sides of the

square 0 < x, y < 1. Then, the problem (5), (6) becomes a finite-difference counterpart to the Dirichlet

problem for the Poisson equation. This problem has a unique solution for every right-hand side fM = (fro).

Moreover, this solution can be easily computed using the separation of variables (Fourier method).

Before proceeding any further, we note that all the constructions hereafter are valid for the general

equations/systems (4), (5), (6), however, for the basic understanding of the methodology it is sufficient to

conduct the analysis only for the foregoing example of the difference Poisson equation.

Let us now split the grid M into two arbitrary fixed subgrids M + and M-, so that M _- M + U M-,

M+ N M- -- 0. The system (4) is split accordingly into two subsystems:

(7) _ am,_u,_ = O, m E M +,
nENm

(8) _ amnU n _ 0_ m E M-.

nEN_

The solutions of these subsystems are defined on the grids N + = U Nm and N- -- U Nrn,
mEM + rnEM-

respectively.

DEFINITION 2.2. The set _ -_ N + A N- is called a grid contour.

DEFINITION 2.3. Let _+ EUN and _N EUN be two arbitrary regular functions. We define _he function

U iN as

(9)
± ( _+, for n E N +,

Url "

_n, for n E N-.



ThefunctionUigis calledapiecewise-regularfunction.

and _n at every node n C %

DEFINITION 2.4. The function v._ defined on _/

Clearly, the function uiN of (9) has two values _+

v_ In=_+-_, nE%

is called the jump [UiN]._= v_ of the piecewise-regular function UiN on the grid contour %

We will assume that the subdivision M = M + U M- is coherent with the choice of the space of regular

functions UN so that for every function Ug EUN the following two functions

(10) u + = ON(N+)uN, UN = ON(N--)UN

will also be regular, i.e., u + EUN, u N EUN. Here Oy(X) is an indicator of the subset X C Y. For the

foregoing example (Laplace's equation) this requirement is satisfied for any subdivision M = M + U M-.

Let us assume that a piecewise-regular function has the jump v._ = [u_] = 0, i.e., _+ = _- for n E %

We will identify this piecewise-regular function u_N with the following single-valued function

(11)

{ _+, for n E N+\%

UNIn __. 1 +(_,, + _), for n e %

_g, for n E N-\7.

LEMMA 2.5. The single-valued function UN defined (11) is regular, i.e., UN E UN.

Proof. Clearly, the following equality

(12) UN = ON(N+)_+N q- ON(N-)_ N -- _ON(N+)ON(N-)(_ + -b _N)

is true. All three terms on the right-hand side of (12) are regular functions. Therefore, UN is also a regular

function, UN GUN. 0

DEFINITION 2.6. The pieeewise-regular function (9) is called a piecewise-regular solution to the equation

(4) with boundary condition (6) if

(13) E a +mn_n = 0 for mEM +,
nE N_

(14) Z am,_- = 0 for mEM-.
nENm

DEFINITION 2.7. Let u. r be a function defined on 3' such that u7 =uNtT, where uu E UN. A space of

all functions u. r of this kind is called the space of jumps U._.

THEOREM 2.8. Let u. r E UT. A piecewise-regular solution uiN of problem (4), (6) with the jump v_

exists and is unique. This piecewise-regular solution can be calculated by the formula

(15) UiN = V_N - wN,



wherev_Nisanarbitrarypiecewise-regular

(16) ViN In =

function

v+ I'_, for n E g +,
v[v In, for n E N-,

with the jump vT, and WN is a solution to

E
fm= nEN_

nEN_

problem (5), (6) with the right-hand side given by

+ for m E M +,amn V N ,

arnnVN, for m E M-.

Proof. Notice that a pieeewise-regular function V_Nwith the jump v7 exists for any given vT. In particular,

the function (16), where

0, for n E N+\7,
In=

v.y In, for n E 7

v N = 0, for nEN-,

is one of such functions. Then, the regular function WN can bc identified with the following piecewise-regular

function

WiN In= I WN [,_, for nEN +,

( Wg In, for n E N-,

which has two values at every node of 7 but its jump is zero. Therefore, the function u_¢ defined by formula

(15) has the same jump as the function Vig does, i.e., JUAN]7 = v-_. Furthermore, it is obvious that the

function (15)

u_ In= / v+ In -wn for nEN +,

t WN In --Wn for n E N-,

solves equations (13), (14). This function is also a piecewise-regular solution of (4), (6) with the jump vT.

Let us now show that there is no other piecewise-regular solution _¢ to problem (4), (6) with the jump

vT. Clearly, the piecewise-regular function U_N -- fiN,

(U_N - u±N)In= / u+ - fin+ for nEN +,

[ un - un for n E N-,

is a piecewise-regular solution with the jump v-y -- 0, i.e., it is a regular solution of problem (4), (6). However,

this problem has only trivial solution, therefore



DEFINITION2.9. The piecewise-regular solution u_N to problem (4), (6) with the jump v. r E U7 is called

(17) u_ = P+v.y

with the density v_ from the space of jumps.

REMARK 2.10. We emphasize that neither the definition of the difference potential nor the algorithm

for its calculation (Theorem 2.8) actually require knowledge of the fundamental solution or Green's function

for problem (_), (6); therefore both the definition and the theorem are generic for the linear finite-difference

systems.

The difference potential u + = P+v. r is a piecewise-regular solution and consequently, it can be written

in the form (9), (13), (14)

± { u.+,
(18) u,_ =

Urt ,

We will also need the following notations:

(19) u + = P+vT,
uX = PgvT,

Let us now rewrite formula (17) as follows

(20)

DEFINITION 2.11.

(21) E amnun = 0 for m E M + (respectively, m E M-)
rtCN_

for n E N +,

for n EN-.

for n E N +,

for nEN-.

+ _ P+vT, for n E N +,

un = _ P_v_, for ncN-.

The solution uN+ (respectively, uN-) of equation

defined on N + (respectively, N-) is called a regular solution if there is a regular function u N E UN that

coincides with UN+ on N + C N (respectively, N- C N).

The properties of difference potentials established in Theorem 2.12 below constitute a foundation for all

DPM-based algorithms.

THEOREM 2.12. The function v_ E U. r can be complemented on N + to a regular solution VN+ of equation

(21) if and only if the equality

(22) P+v._ = vn Vn E'y

holds. If equality (22) holds, then the complement is unique. It coincides with the difference potential

(23) vn = P+v7 for neN +.

the difference potential



Proof.Let the function v_ E U_ satisfy equality (22). Then the regular solution VN+ defined by formula

(23) coincides with v_ on %

Conversely, let the function v_ be such that there is a complement Vg+ that is a regular solution of

equation (21) on N +. Then the piecewise-regular hmction

^+ f vn, for nEN +,
Urt

0., for n E N-

is actually a piecewise-regular solution of equation (4) with the jump

= 0r =

i.e., the function fi+ is a difference potential with the density v-r. Therefore, the function VN+ is unique,

namely, it can be represented as

(24) v,_ = P+v_ for nEN +.

Formula (24) is the same as formula (23). D

3. DPM-based Numerical Algorithms. We are going to illustrate some key ideas of the algorithms

using the Laplace equation

(25) 02u(x' y) 02u(x' y) - O, (z,y) E D.
Ox 2 "+- Oy2

We assume that the closure/) of domain D belongs to the interior of the unit square 0 < x, y < 1. We will

use the aforementioned five-point difference analogue of the Laplace equation. Let M + be a set of all grid

nodes m, m E /). Then, M-, N +, N-, and 7 = N + NN- are determined automatically in accordance

with the foregoing constructions. Let u(x, y) be a sufficiently smooth function defined on some domain Q

such that Q contains both/) and N +. Let UN+ be a trace of u(x, y) on N +, i.e., un = Ug+ In coincides with

u(x, y) at the nodes n, n E N +. Clearly, the function Ug+ is an approximate solution to the finite-difference

analogue of the Laplace equation (25). Therefore, equalities (22) and (23), i.e.,

(26) P+u_ = un, hE'7

(27) P+ux = un, n E N D'y

are approximately satisfied as well.

Having made these comments, we will now consider the following three problems.

3.1. Boundary-value Problem. Let the Laplace equation (25) be supplemented by the Dirichlet

boundary condition

(2s) u(x,y)lF = (x,y) • r

where qo(s) is a given function of the arc length s on the curve F = OD. Let the equality

L

(29) Ou(x,y) r = E C[_O'(s)
On t=,



be an approximation of the normal derivative of the solution u(x, y) on F in the interior direction; here

C[(s), l = 1, 2, ..., are some (undetermined) coefficients. We assume that as the number of terms L in the

sum (29) increases, the accuracy of approximation for the normal derivative improves as well. We will define

the function v_ at any node v E _/using Taylor's expansion:

L

(30) v_ = _(s_) + Pv ECl¢t(sv),
1=1

where s_ is the foot of the normal dropped from the node v E 7 to the curve F and p_ is the distance

between v E 7 and s = s_ E F. The sign of p_ is positive if v E/9 and negative if v _/_. If the coefficients

C_, C_,..., C_ were known, then the fimction (30)

(31) = cL...,cD

could have been plugged into equation (26) and would have actually been its approximate solution, i.e.,

(32) P+v._ = v.y.

As C[ are unknown, equality (32) can be used for determining these coefficients. The system of linear equa-

tions (32) with respect to C[ may be overdetermined; then, we will be looking for its solution C_, C_, ..., C_

in the sense of least squares.

After the coefficients C_, C_, ..., C_: have been found, the approximate solution u(x, y) of (25), (28) can

be represented as

un _ P+v_, nEN+

We do not delineatehere what specificEuclidean norm should be chosen forthe method ofleastsquares.

3.2. Superelement. Following the foregoingalgorithm we can constructan approximate solutionof

the Laplace equation (25):

(33) u(x, y) = u(x, y, C1, C2, ..., CR),

which will depend on the set of arbitrary parameters C1, C2, ..., CR; R is some positive integer. Under the

proper choice of these parameters, the solution (33) can approximate any particular solution of the Laplace

equation u(x, y) and the corresponding approximation error will vanish as R _ oc.

Formula (33) can be rewritten in the form

R

(34) u(x, y) = E CrUr(X, y),
r:l

where Ur(X, y) is a solution to the Dirichlet problem (25), (28) with

(35) _a(s) = Cr(s), r : 1,2, ...,R.

Let now the grid size h approach zero, h ----* +0, and L ---* cc (see formula (30)), R _ oc. Then, formula

(34) will approximate any particular solution u(x, y) of the Laplace equation (25). In this respect, formula

(34) yields an approximate general solution to the Laplace equation.

REMARK 3.1. We emphasize that no finite-difference approximation to the boundary conditions (28)

and (35) has been used.



3.3. Domain Decomposition. Let us consider a problem formulated on a domain of complex shape;

in addition, the gradient of the solution may vary strongly across the domain. Let then split the domain into a

number of appropriate subdomains and construct a superelement of type (34) on each subdomain. Different

independent grids and different problems similar to (5), (6) can be used for constructing each of these

superelements. Therefore, one can calculate all the superelements independently and possibly, concurrently,

which is well suited for parallel implementation. After the superelements have been constructed, we choose

the parameters C1, C2,..., CR so that to satisfy the boundary conditions and matching conditions on interfaces

between the superelements.

3.4. Auxiliary Problem and Its Choice. The difference potential

P+v._ = un, for hEN +,

depends on the choice of problem (5), (6). However, the possibility to complement v_ everywhere on N + to

a regular solution of the equation

a,,_nun = 0, for mEM +.
nENm

does not depend on such changes of M, Nm, amn, UN that would leave the sets M +, N +, 7, amn, and

Nm for m E M +, as well as the set of all regular solutions on N +, unaltered. Therefore, the class of all

functions satisfying equality (22) is not affected by the changes of this type as well. Hence, we do have a

certain flexibility in choosing the problem (5), (6), if we eventually need only to meet the condition (22). In

this case, the problem (5), (6) can be considered an auxiliary problem for satisfying (22). One can choose

an appropriate auxiliary problem to make the actual computation of the difference potential

un -- P+v-r, nEN+

easy and convenient, which is important for implementation.

4. Brief Bibliographical Survey.

• Apparatus of the DPM: [9, 11, 13].

• Discretization and numerical solution of the Calderon-Seeley boundary equations: [8, 11, 13, 16].

• Artificial boundary conditions for the numerical solution of infinite-domain problems: [2, 14, 20, 23,

241.
• Implementation of the DPM for domain decomposition algorithms: [4, 5, 10, 16].

• Problems with complex boundary conditions, e.g., a viscous flow problem in the vorticity stream

function formulation: [19].

• Active shielding and noise control: [15, 17, 21].
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sufficiently universal and at the same time simple. The apparatus of difference potentials constitutes the foundation

of the difference potentials method (DPM).

Before considering the actual constructions of difference potentials, we discuss some new opportunities that the

DPM provides for computations. This brief introductory discussion (as well as the main part of the lecture itself)

has a goal of drawing the attention of the scientific computing research community to the DPM and its applications.

Although the construction of difference potentials with the density from the space of jumps presents an independent

mathematical interest, the subject of this lecture will seem too abstract without discussing the possible applications

in the beginning. Moreover, in the end of the lecture we will give a review of the literature emphasizing some

applications of the DPM that have already been implemented in computational practice.

14. SUBJECT TERMS

difference potentials method, boundary-value problems, domain decomposition, active

sound control

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

4SN 7540-01-280-5500

18. SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION

OF THIS PAGE OF ABSTRACT
Unclassified

15. NUMBER OF PAGES

16

16. PRICE CODE

A03
20. LIMITATION

OF ABSTRACT

i

Standard Form 298(Rev. 2-8g)
Prescribedby ANSI Std. Z39-18
298-102


